Advanced Lithium-Ion Batteries for Plug-In Hybrid-Electric Vehicles
نویسنده
چکیده
In this study, electric-drive vehicles with series powertrains were configured to utilize a lithiumion battery of very high power and achieve sport-sedan performance and excellent fuel economy. The battery electrode materials are LiMn2O4 and Li4Ti5O12, which provide a cell area-specific impedance of about 40% of that of the commonly available lithium-ion batteries. Data provided by EnerDel Corp. for this system demonstrate this low impedance and also a long cycle life at 55C. The batteries for these vehicles were designed to deliver 100 kW of power at 90% opencircuit voltage to provide high battery efficiency (97-98%) during vehicle operation. This results in battery heating of only 1.6C per hour of travel on the urban dynamometer driving schedule (UDDS) cycle, which essentially eliminates the need for battery cooling. Three vehicles were designed, each with series powertrains and simulation test weights between 1575 and 1633 kg: a hybrid electric vehicle (HEV) with a 45-kg battery, a plug-in HEV with a 10-mile electric range (PHEV10) with a 60-kg battery, and a PHEV20 with a 100-kg battery. Vehicle simulation tests on the Argonne National Laboratory’s simulation software, the Powertrain System Analysis Toolkit (PSAT), which was developed with MATLAB/Simulink, showed that these vehicles could accelerate to 60 mph in 6.2 to 6.3 seconds and achieve fuel economies of 50 to 54 mpg on the UDDS and highway fuel economy test (HWFET) cycles. This type of vehicle shows promise of having a moderate cost if it is mass produced, because there is no transmission, the engine and generator may be less expensive since they are designed to operate at only one speed, and the battery electrode materials are inexpensive.
منابع مشابه
Thermal behavior of a commercial prismatic Lithium-ion battery cell applied in electric vehicles
This paper mainly discusses the thermal behavior and performance of Lithium-ion batteries utilized in hybrid electric vehicles (HEVs), battery electric vehicles (BEVs) and fuel cell electric vehicles (FCEVs) based on numerical simulations. In this work, the battery’s thermal behavior is investigated at different C-rates and also contour plots of phase potential for both tabs and volume-mo...
متن کاملNumerical investigation of the parameters of a prismatic lithium ion battery under load for electrical vehicle
Electric vehicles and hybrid electric vehicles are a suitable alternative for vehicles with hydrocarbons fuels to reduce pollution and fossil resources. The batteries operate as the driving force for these vehicles. One of the most critical parameters of the battery is computing the state of charge (SOC). The best range for SOC of lithium-ion battery is between 20% and 90%, and charging and dis...
متن کاملEvaluating the Degradation Mechanism and State of Health of LiFePO4 Lithium-Ion Batteries in Real-World Plug-in Hybrid Electric Vehicles Application for Different Ageing Paths
Accurate determination of the performance and precise prediction of the state of health (SOH) of lithium-ion batteries are necessary to ensure reliability and efficiency in real-world application. However, most SOH offline studies were based on dynamic stress tests, which only reflect the universal rule of degradation, but are not necessarily applicable for real-world applications. This paper p...
متن کاملElectric Vehicle Lithium Ion Batteries Thermal Management
The lithium ion batteries, thanks to their high densities and high power, became promotes element for hybrid-electric and plug-in electric vehicles. Thermal management of lithium ion battery is important for many reasons, including thermal runaway, performance and maintains a constant temperature during the operating, security, lifecycle. However, in a battery pack, the batteries are stacked ag...
متن کاملMesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance.
Today, we are facing a severe challenge–global warming and climate change due to the burning of fossil fuels for energy. The greenhouse gas emissions are mainly derived from the transportation sector and electricity power generation. Therefore, a global solution must involve a dramatic move to renewable energy. [ 1 , 2 ] Lithium ion batteries have proved themselves the most advanced electrochem...
متن کامل